0 JBC
↳1 JBC2FIG (⇒)
↳2 JBCTerminationGraph
↳3 FIGtoITRSProof (⇒)
↳4 IDP
↳5 IDPNonInfProof (⇒)
↳6 IDP
↳7 IDependencyGraphProof (⇔)
↳8 TRUE
public class PlusSwap{
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();
int z;
int res = 0;
while (y > 0) {
z = x;
x = y-1;
y = z;
res++;
}
res = res + x;
}
}
public class Random {
static String[] args;
static int index = 0;
public static int random() {
String string = args[index];
index++;
return string.length();
}
}
Generated 14 rules for P and 6 rules for R.
Combined rules. Obtained 1 rules for P and 1 rules for R.
Filtered ground terms:
913_0_main_LE(x1, x2, x3, x4) → 913_0_main_LE(x2, x3, x4)
Cond_913_0_main_LE(x1, x2, x3, x4, x5) → Cond_913_0_main_LE(x1, x3, x4, x5)
930_0_main_Return(x1) → 930_0_main_Return
Filtered duplicate args:
913_0_main_LE(x1, x2, x3) → 913_0_main_LE(x1, x3)
Cond_913_0_main_LE(x1, x2, x3, x4) → Cond_913_0_main_LE(x1, x2, x4)
Combined rules. Obtained 1 rules for P and 1 rules for R.
Finished conversion. Obtained 1 rules for P and 1 rules for R. System has predefined symbols.
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(0) -> (1), if ((x1[0] > 0 →* TRUE)∧(x0[0] →* x0[1])∧(x1[0] →* x1[1]))
(1) -> (0), if ((x1[1] - 1 →* x0[0])∧(x0[1] →* x1[0]))
(1) (>(x1[0], 0)=TRUE∧x0[0]=x0[1]∧x1[0]=x1[1] ⇒ 913_0_MAIN_LE(x0[0], x1[0])≥NonInfC∧913_0_MAIN_LE(x0[0], x1[0])≥COND_913_0_MAIN_LE(>(x1[0], 0), x0[0], x1[0])∧(UIncreasing(COND_913_0_MAIN_LE(>(x1[0], 0), x0[0], x1[0])), ≥))
(2) (>(x1[0], 0)=TRUE ⇒ 913_0_MAIN_LE(x0[0], x1[0])≥NonInfC∧913_0_MAIN_LE(x0[0], x1[0])≥COND_913_0_MAIN_LE(>(x1[0], 0), x0[0], x1[0])∧(UIncreasing(COND_913_0_MAIN_LE(>(x1[0], 0), x0[0], x1[0])), ≥))
(3) (x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_913_0_MAIN_LE(>(x1[0], 0), x0[0], x1[0])), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [bni_20]x1[0] + [bni_20]x0[0] ≥ 0∧[(-1)bso_21] ≥ 0)
(4) (x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_913_0_MAIN_LE(>(x1[0], 0), x0[0], x1[0])), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [bni_20]x1[0] + [bni_20]x0[0] ≥ 0∧[(-1)bso_21] ≥ 0)
(5) (x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_913_0_MAIN_LE(>(x1[0], 0), x0[0], x1[0])), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [bni_20]x1[0] + [bni_20]x0[0] ≥ 0∧[(-1)bso_21] ≥ 0)
(6) (x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_913_0_MAIN_LE(>(x1[0], 0), x0[0], x1[0])), ≥)∧[bni_20] = 0∧[(-1)bni_20 + (-1)Bound*bni_20] + [bni_20]x1[0] ≥ 0∧0 = 0∧[(-1)bso_21] ≥ 0)
(7) (x1[0] ≥ 0 ⇒ (UIncreasing(COND_913_0_MAIN_LE(>(x1[0], 0), x0[0], x1[0])), ≥)∧[bni_20] = 0∧[(-1)Bound*bni_20] + [bni_20]x1[0] ≥ 0∧0 = 0∧[(-1)bso_21] ≥ 0)
(8) (>(x1[0], 0)=TRUE∧x0[0]=x0[1]∧x1[0]=x1[1]∧-(x1[1], 1)=x0[0]1∧x0[1]=x1[0]1∧>(x1[0]1, 0)=TRUE∧x0[0]1=x0[1]1∧x1[0]1=x1[1]1∧-(x1[1]1, 1)=x0[0]2∧x0[1]1=x1[0]2∧>(x1[0]2, 0)=TRUE∧x0[0]2=x0[1]2∧x1[0]2=x1[1]2 ⇒ COND_913_0_MAIN_LE(TRUE, x0[1]1, x1[1]1)≥NonInfC∧COND_913_0_MAIN_LE(TRUE, x0[1]1, x1[1]1)≥913_0_MAIN_LE(-(x1[1]1, 1), x0[1]1)∧(UIncreasing(913_0_MAIN_LE(-(x1[1]1, 1), x0[1]1)), ≥))
(9) (>(x1[0], 0)=TRUE∧>(x1[0]1, 0)=TRUE∧>(-(x1[0], 1), 0)=TRUE ⇒ COND_913_0_MAIN_LE(TRUE, -(x1[0], 1), x1[0]1)≥NonInfC∧COND_913_0_MAIN_LE(TRUE, -(x1[0], 1), x1[0]1)≥913_0_MAIN_LE(-(x1[0]1, 1), -(x1[0], 1))∧(UIncreasing(913_0_MAIN_LE(-(x1[1]1, 1), x0[1]1)), ≥))
(10) (x1[0] + [-1] ≥ 0∧x1[0]1 + [-1] ≥ 0∧x1[0] + [-2] ≥ 0 ⇒ (UIncreasing(913_0_MAIN_LE(-(x1[1]1, 1), x0[1]1)), ≥)∧[(-2)bni_22 + (-1)Bound*bni_22] + [bni_22]x1[0]1 + [bni_22]x1[0] ≥ 0∧[1 + (-1)bso_23] ≥ 0)
(11) (x1[0] + [-1] ≥ 0∧x1[0]1 + [-1] ≥ 0∧x1[0] + [-2] ≥ 0 ⇒ (UIncreasing(913_0_MAIN_LE(-(x1[1]1, 1), x0[1]1)), ≥)∧[(-2)bni_22 + (-1)Bound*bni_22] + [bni_22]x1[0]1 + [bni_22]x1[0] ≥ 0∧[1 + (-1)bso_23] ≥ 0)
(12) (x1[0] + [-1] ≥ 0∧x1[0]1 + [-1] ≥ 0∧x1[0] + [-2] ≥ 0 ⇒ (UIncreasing(913_0_MAIN_LE(-(x1[1]1, 1), x0[1]1)), ≥)∧[(-2)bni_22 + (-1)Bound*bni_22] + [bni_22]x1[0]1 + [bni_22]x1[0] ≥ 0∧[1 + (-1)bso_23] ≥ 0)
(13) (x1[0] ≥ 0∧x1[0]1 + [-1] ≥ 0∧[-1] + x1[0] ≥ 0 ⇒ (UIncreasing(913_0_MAIN_LE(-(x1[1]1, 1), x0[1]1)), ≥)∧[(-1)bni_22 + (-1)Bound*bni_22] + [bni_22]x1[0]1 + [bni_22]x1[0] ≥ 0∧[1 + (-1)bso_23] ≥ 0)
(14) ([1] + x1[0] ≥ 0∧x1[0]1 + [-1] ≥ 0∧x1[0] ≥ 0 ⇒ (UIncreasing(913_0_MAIN_LE(-(x1[1]1, 1), x0[1]1)), ≥)∧[(-1)Bound*bni_22] + [bni_22]x1[0]1 + [bni_22]x1[0] ≥ 0∧[1 + (-1)bso_23] ≥ 0)
(15) ([1] + x1[0] ≥ 0∧x1[0]1 ≥ 0∧x1[0] ≥ 0 ⇒ (UIncreasing(913_0_MAIN_LE(-(x1[1]1, 1), x0[1]1)), ≥)∧[bni_22 + (-1)Bound*bni_22] + [bni_22]x1[0]1 + [bni_22]x1[0] ≥ 0∧[1 + (-1)bso_23] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(913_0_main_LE(x1, x2)) = [-1] + [-1]x2 + [-1]x1
POL(0) = 0
POL(Cond_913_0_main_LE(x1, x2, x3)) = [-1] + [-1]x3 + [-1]x2 + [-1]x1
POL(>=(x1, x2)) = [-1]
POL(930_0_main_Return) = [-1]
POL(913_0_MAIN_LE(x1, x2)) = [-1] + x2 + x1
POL(COND_913_0_MAIN_LE(x1, x2, x3)) = [-1] + x3 + x2
POL(>(x1, x2)) = [-1]
POL(-(x1, x2)) = x1 + [-1]x2
POL(1) = [1]
COND_913_0_MAIN_LE(TRUE, x0[1], x1[1]) → 913_0_MAIN_LE(-(x1[1], 1), x0[1])
COND_913_0_MAIN_LE(TRUE, x0[1], x1[1]) → 913_0_MAIN_LE(-(x1[1], 1), x0[1])
913_0_MAIN_LE(x0[0], x1[0]) → COND_913_0_MAIN_LE(>(x1[0], 0), x0[0], x1[0])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer